Part Number Hot Search : 
SMDJ24CA PMB2309 TDA46052 30M12 K400101 MP2504 GL3PR41 12022
Product Description
Full Text Search
 

To Download ML12002 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 ML12002 Analog Mixer
Legacy Device: Motorola MC12002 The ML12002 is a double balanced analog mixer, including an input amplifier feeding the mixer carrier port and a temperature compensated bias regulator. The input circuits for both the amplifier and mixer are differential amplifier circuits. The on-chip regulator provides all of the required biasing. This circuit is designed for use as a balanced mixer in high-frequency wide-band circuits. Other typical applications include suppressed carrier and amplitude modulation, synchronous AM detection, FM detection, phase detection, and frequency doubling, at frequencies up to UHF. There are two package offerings: * Plastic Dual Inline 14 Lead, P Dip. * Plastic Surface Mount 14 Lead SOIC. * Operating Temperature Range: TA = -30 to +85C
14 1
P DIP 14 = CP PLASTIC PACKAGE CASE 646
SOG 14 = -5P SOG CASE 751A CROSS REFERENCE/ORDERING INFORMATION MOTOROLA LANSDALE PACKAGE P DIP 14 MC12002P ML12002CP SOG 14 MC12002D ML12002-5P
Note: Lansdale lead free (Pb) product, as it becomes available, will be identified by a part number prefix change from ML to MLE.
PIN CONNECTIONS Figure 1. Logic Diagram
2 3 VB 8 Signal Inputs 9 Amplifier VR Carrier Port Mixer Signal Port VR VB 12 11 Output Regulator Bypass Local Oscillator Input Local Oscillator Input Alternate Signal Input Null Adjust Bias Regulator 1 14 VCC Resistor Load
Local Oscillator Inputs
2
13
3
12
Data Output
4
11
Data Output
5
10
Regulator Bypass Mixer Signal Input Mixer Signal Input
Null Adjust
6
9
VEE
7 (Top View)
8
Page 1 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
TEST VOLTAGE VALUES Volts VIHmax VILmin +2.0 VCC +5.0
ELECTRICAL CHARACTERISTICS
Test Limits Pin -30C Under Test Min Max Symbol ICC IinH 14 2 3 8 9 2 3 8 9 11 12 11 12 11 11 12 12 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- +25C Min -- -- -- -- -- - 0.7 - 0.7 - 0.7 - 0.7 0.7 0.7 2.1 2.1 4.2 4.2 4.2 4.2 -100 -200 Max 16 0.75 0.75 0.75 0.75 -- -- -- -- 1.3 1.3 3.9 3.9 7.8 7.8 7.8 7.8 +100 +200 +85C Min -- -- -- -- -- -- -- -- -- -- -- -- -- -- Max -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- +100 +200 Unit mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc mAdc Adc Adc Vdc mVdc mVdc mVdc Vdc
+2.9
VOLTAGE APPLIED TO PINS LISTED BELOW
Characteristic Power Supply Drain Input Current
VIHmax -- 2 3 8 9 -- -- -- -- -- -- -- -- 2,9 3,8 2,8 3,9 -- -- -- -- -- -- --
VILmin -- -- -- -- -- 2 3 8 9 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
VCC 11,12,14 11,12,14 11,12,14 11,12,14 11,12,14 11,12,14 11,12,14 11,12,14 11,12,14 11,12,14
Gnd
11,12,14 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 5,6,7 7 7
IinL
Output Current
IO1 IO2 Iout
11,12,14 5,6,7 11,12,14 5,6,7 11,12,14 11,12,14 11,12,14 11,12,14 5,6,7 5,6,7 5,6,7 5,6,7
Differential Current Bias Voltage
IO1 IO2 VBias
11,12 -100 +100 11,12 -200 +200 1 4 5 6 10 2.33 390 275 275 1.26
-100 -200
11,12,14 7 11,12,14 5,6,7 11,12,14 5,6,7 11,12,14 5,6,7 11,12,14 7 11,12,14 7 11,12,14 5,6,7 Gnd 14 14 VEE 7 7
2.53 2.32 2.52 2.3 2.5 590 400 600 410 610 415 285 425 295 435 415 285 425 295 435 1.46 1.185 1.385 1.105 1.305
Pulse Pulse In Out -3.0 V AC Gain (See Figure 1) (Frequency = 100 MHz) *Note
NOTE:
AV
11 11
-- --
-- --
5.0 0.28
-- --
-- --
-- --
V/V V/V
2 8
11 11
9 3
*Note: AC Gain is a function of collector load impedance.
Page 2 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
Page 3 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
Figure 4. Carrier Feedthrough Test Circuits
Signal A Input (Pin 2)
Output (Pin12)
Output (Pin 11)
Signal B Input (Pin 8)
Output (Pin 12)
Output (Pin 11)
Tektronix 454 and 568 Oscilloscopes
1.0 f
2 3 Local Oscillator Inputs Mixer Inputs Reg. Bypass 1 0.1 f 0.1 f 10 Null Adjust 5 50 6 Outputs
12
Sampling Volt meter Hewlett Packard 3406A or Equiv.
1.0 f Hewlett Packard 651A and 3300B 100 kHz to 100 MHz @ 30 mVpp 8 1.0 f 9
11
133 VCC 14
133
VEE 7
0.1 f +5.0 V
Notes: Test 1 - Adjust potentiometer for carrier null at fc = 100 kHz. Test 2 - Connect pins 5 and 6 to Gnd.
All Input and output cables to the scope are equal lengths of 50-ohm coaxial cable.
Page 4 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
Figure 5. Carrier Feedthrough versus Frequency (Test 1)
V CFT, CARRIER OUTPUT VOLTAGE (mV[rms]) V CFT, CARRIER OUTPUT VOLTAGE (mV [rms]) 1.0 10.0 100.0 5.0 4.0 3.0 2.0
Figure 6. Carrier Feedthrough versus Frequency (Test 2)
5.0 4.0
3.0 2.0
1.0 0.0 0.1
1.0 0.0 0.1
1.0
10.0
100.0
fc, CARRIER FREQUENCY (MHz)
fc, CARRIER FREQUENCY (MHz)
Figure 7. Carrier Suppression Test Circuit
Hewlett Packard 3406A Sampling Voltmeter
0.1 f Hewlett Packard TEE 11536A 50 1.0 f
2 3 8 Local Oscillator Inputs Mixer Inputs Reg. Bypass VEE 1 1.0 f 10 1.0 f 50 - + - 5.0 V 7 5 Outputs
12 11 50 50 Null Adjust 6 VCC 14
50 X 50 Atten.
50
0.1 f Hewlett Packard 651A and 3300B 100 kHz to 400 MHz @ 30 mV RMS. Hewlett Packard 651A 10 kHz @ 150 mV R.M.S. 1.0f
9
All input and output cables to the scope are equal lengths of 50-ohm coaxial cable.
- 5.0 V Notes: Test 1 - Adjust potentiometer for carrier null @ fc = 100 kHz Test 2 - Connect pins 5 and 6 to -5.0 volts Test 3 - Adjust potentiometer for carrier null @ 25 C
Figure 8. Carrier Suppression versus Frequency (Test 1)
+40 +30 +20 +10 0 -10 -20 -30 -40 -50 -60 0.1 1.0 10.0 100.0 1.0 K CARRIER SUPPRESSION (dB) CARRIER SUPPRESSION (dB)
Figure 9. Carrier Suppression versus Frequency (Test 2)
+40 +30 +20 +10 0 -10 -20 -30 -40 -50 -60 0.1 1.0 10.0 100.0 1.0 K
fc, CARRIER FREQUENCY (MHz)
fc, CARRIER FREQUENCY (MHz)
Page 5 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
Figure 10. Carrier Suppression versus Temperature
-10 CARRIER SUPPRESSION (dB) -20 -30 fc = 10 MHz @ 30 mvrms fs = 10 KHz @ 150 mvrms
-40
-50 -60 -55
-25
0
+25
+50
+75
+100
+125
TA, AMBIENT TEMPERATURE (C)
Figure 11a. Output Offset Current (I ) versus Temperature 00
1.0 f 2 Local Oscillator Inputs Outputs 1.0 f 1.0 f 8 Mixer Inputs Reg. Bypass 1 0.1f 10 11 I11 I A VEE 7 0.1 f 0.1 f 5 Null Adjust 6 VCC 14 IOO = I11 - I12 12 I12 I A
1.0 f
3
9
-5.0 V Notes: Test 1 - Pins 5 and 6 left open Test 2 - Pins 5 and 6 are tied to -5.0 volts
Figure 12. Output Offset Current versus Temperature
I OO, OUTPUT OFFSET CURRENT ( A)
Figure 13. Typical Input Impedance versus Frequency (No Circuit)
400 31 R(OHMS) TYPICAL INPUT IMPEDANCE vs FREQUENCY Zin
R C
+100 R L RESISTANCE (Ohms)
350 300 250 200 150 100 50 -25 0 +25 +50 +75 +100 +125
26 C, CAPACITANCE (pF) 21 16 11 6
+50 0.0
TEST 1
-50 -100 -55
TEST 2
R
C
- LOCAL OSCILLATOR - AND SIGNAL INPUTS
1
200
400
600
800
1000
TA, AMBIENT TEMPERATURE (C)
f, FREQUENCY (MHZ)
Page 6 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
C8 .1uF C5 1nF C6 1nF
V1 5V +V
ML12002 U1
byp P1 LOin P2 LOin P3 altin P4 null P5 null P6 gnd P7 P14 vcc P13 load P12 rfout P11 rfout P10 byp P9 sigin P8 sigin
C7 1uF
R2 50
R1 50
C2 1nF
MOD input
P1 V2 5V +V R4 1k
RF out
C3 1nF C4 1nF P2
C1 1nF P3
R3 10k 40%
RF input
AGC
Figure 11b. Application Circuite Using ML12002 as a AM Modulator
Page 7 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
OUTLINE DIMENSIONS
P DIP 14 = CP PLASTIC PACKAGE (ML12002CP) CASE 646-06 ISSUE M
14 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --- 10 0.015 0.039 MILLIMETERS MIN MAX 18.16 18.80 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --- 10 0.38 1.01
B
1 7
A F N -T-
SEATING PLANE
L C
K H G D 14 PL 0.13 (0.005)
M
J M
DIM A B C D F G H J K L M N
Page 8 of 9
www.lansdale.com
Issue A
ML12002
LANSDALE Semiconductor, Inc.
OUTLINE DIMENSIONS
SOG 14 = -5P (ML12002-5P) CASE 751A-03
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION 4. MAXIMUM HOLD PROTRUSION 0.15 (0.006) PER SIDE 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION
-A14 8
-B1 7
P7
PL
0.25 (0.010)
M
B
M
G C
R X 45
F
SEATING PLANE
K 0.25 (0.010)
M
M
S
J
TB
A
S
DIM A B C D F G J K M P R
INCHES MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0 7 5.80 6.20 0.25 0.50
MILLIMETERS MIN MAX 0.337 0.334 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0 7 0.228 0.244 0.010 0.019
Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.
Page 9 of 9
www.lansdale.com
Issue A


▲Up To Search▲   

 
Price & Availability of ML12002

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X